Искусственный интеллект: Часть 2

Мозг является, пожалуй, самой сложной из известных нам систем переработки информации. Достаточно сказать, что в нем содержится около 100 миллиардов нейронов, каждый из которых имеет в среднем 10 000 связей. При этом мозг чрезвычайно надежен: ежедневно погибает большое количество нейронов, а мозг продолжает функционировать.

Обработка огромных объемов информации осуществляется мозгом очень быстро, за доли секунды, несмотря на то, что нейрон является медленнодействующим элементом со временем реакции не менее нескольких миллисекунд.
Пока не слишком понятно, как мозгу удается получить столь впечатляющее сочетание надежности и быстродействия. Довольно хорошо изучена структура и функции отдельных нейронов, имеются данные об организации внутренних и внешних связей между нейронами некоторых структурных образований мозга, совсем мало известно об участии различных структур в процессах переработки информации.
Первой попыткой создания и исследования искусственных нейронных сетей считается работа Ж. Мак-Калока и В. Питтса «Логическое исчисление идей, относящихся к нервной деятельности» (1943 г.), в которой были сформулированы основные принципы построения искусственных нейронов и нейронных сетей. И хотя эта работа была лишь первым этапом, многие идеи, описанные здесь, остаются актуальными и на сегодняшний день.
Большим прорывом в области нейроинтеллекта стало создание нейрофизиологом Френком Розенблатом в 1962 г. модели однослойной нейронной сети, названной персептроном. Она была использована для такого широкого класса задач, как предсказание погоды, анализ электрокардиограмм и искусственное зрение. Однако вскоре выяснилось, что созданные сети не способны решать некоторые задачи, существенно не отличающиеся от тех, которые они решали успешно. Позднее Марвин Минский, используя точные математические методы, строго доказал ряд теорем, показав, что используемые однослойные сети теоретически не способны решить многие простые задачи. Безупречность доказательств Минского, подкрепленная его авторитетом в ученых кругах, явилась одной из причин задержки развития нейроинтеллекта почти на два десятилетия.

За последние десятилетия теория о нейроинтеллекте приобрела новое дыхание. Было предложено много интересных разработок которые развиваются и по сей день.
Вообще нервные клетки, или нейроны, представляют собой особый вид клеток в живых организмах, обладающих электрической активностью, основное назначение которых заключается в оперативном управлении организмом.

Строение нейрона


Нейрон имеет тело (сому) – 1, дерево входов (дендриты) – 4 и выходов (аксон и его окончания) – 2. Сома, как правило, имеет поперечный размер в несколько десятков микрон. Длина дендритов может достигать 1 мм, дендриты сильно ветвятся, пронизывая сравнительно большое пространство в окрестности нейрона. Длина аксона может достигать сотен миллиметров. Начальный сегмент аксона – 3, прилегающий к телу клетки, утолщен. Иногда этот сегмент называют аксонным холмиком. По мере удаления от клетки он постепенно сужается и на расстоянии нескольких десятков микрон на нем появляется миэлиновая оболочка, имеющая высокое электрическое сопротивление. На соме и на дендритах располагаются окончания (коллатерали) аксонов, идущих от других нервных клеток. Каждое такое окончание имеет вид утолщения, называемого синаптической бляшкой, или синапсом. Поперечные размеры синапса, как правило, не превышают нескольких микрон, чаще всего эти размеры составляют около 1 мкм.
На нейроподобный элемент поступает набор входных сигналов x1…хn (или входной вектор ), представляющий собой выходные сигналы других нейроподобных элементов.
Этот входной вектор соответствует сигналам, поступающим в синапсы (зоны контакта между нейронами и другими образованиями, служащая для передачи информации от клетки, генерирующей нервный импульс к другим клеткам) биологиче­ских нейронов. Каждый входной сигнал умножается на соответ­ствующий вес связи w1…wn – аналог эффективности синапса. Вес связи является скалярной величиной положительной для возбуждающих и отрицательной для тормозящих связей. Взвешенные весами связей входные сиг­налы поступают на блок суммации, соот­ветствующий телу клетки, где осущест­вляется их алгебраическая суммация и определяется уровень возбуждения нейроподобного элемента S.

Любая нейронная сеть состоит из входного слоя и выходного слоя. Соответственно подаются независимые и зависимые переменные. Входные данные преобразуются нейронами сети и сравниваются с выходом. Если отклонение больше заданного, то специальным образом изменяются веса связей нейронов между собой и пороговые значения нейронов. Снова происходит процесс вычислений выходного значения и его сравнение с эталоном. Если отклонения меньше заданной погрешности, то процесс обучения прекращается.


Помимо входного и выходного слоев в многослойной сети существуют так называемые скрытые слои. Они представляют собой нейроны, которые не имеют непосредственных входов исходных данных, а связаны только с выходами входного слоя и с входом выходного слоя. Таким образом, скрытые слои дополнительно преобразуют информацию и добавляют нелинейности в модели.
Что же такое нейроподобная сеть? Это искусственный аналог биологической сети, по своим параметрам максимально приближающийся к оригиналу. Нейроподобные сети прошли длинный путь становления и развития, от полного отрицания возможности их применения до воплощения во многие сферы деятельности человека.
Современные цифровые вычислительные машины способны с высоким быстродействием и точностью решать формализованные задачи с вполне определенными данными по заранее известным алгоритмам. Однако в тех случаях, когда задача не поддается формализации, а входные данные неполны, зашумлены или противоречивы, применение традиционных компьютеров становится неэффективным. Альтернативой им становятся специализированные компьютеры, реализующие нетрадиционные нейросетевые технологии. Сильной стороной этих комплексов является нестандартный характер обработки информации. Она кодируется и запоминается не в отдельных ячейках памяти, а в распределении связей между нейронами и в их силе, поэтому состояние каждого отдельного нейрона определяется состоянием многих других нейронов, связанных с ним. Следовательно, потеря одной или нескольких связей не оказывает существенного влияния на результат работы системы в целом, что обеспечивает ее высокую надежность.

Литература



1) В.В. Круглов, М.И. Дли, Р.Ю. Голунов. «Нечеткая логика и искусственные нейронные сети».
2) А.Ю. Дорогов, А.А. Алексеев. «Структурные модели и топологическое проектирование быстрых нейронных сетей». М., изд-во ПАИМС, 1996.
3) А.В. Напалков, Л.Л. Прагина. «Мозг человека и искусственный интеллект». М., изд-во Московского университета, 1985.

Запись опубликована в рубрике Проще говоря с метками , , , , . Добавьте в закладки постоянную ссылку.